/A SEE I BN WE EE H BN e BE B A B B U B SN ER =

. L&y

i

R

T - H - E o

OHIO 2
. L
UNIVERSITY

A Hybrid Asymptotic-Modal Analysis of the
EM Scattering by an Open-Ended S-Shaped
Rectangular Waveguide Cavity

P.H. Law, R.J. Burkholder and P.H. Pathak

The Ohio State University
ElectroScience Laboratory

Deportment of Electrical Engineering
Columbus, Ohio 43212

Technical Report 719630-2
Grant No. NAG3-476
December 1988

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135

(NASA-CR=-185053) A HYBRID ASYMPTOTIC

~-MODA -
ANALYSIS OF THE EM SCATTERING BY AN . Ne9=24519
OPEN-ENDED S-SHAPED RECTANGULAR WAVEGUIDE

CAVITY (Ohio State Unive) 53 p CSCL 20N Onclas

G3/32 0212656



NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.




$0272-101

REPORT DOCUMENTATION | 1. REPORT NO. 2.

PAGE

3. Recipient’s Accession No.

4. Title and Subtitle
A Hybrid Asymptotic-Model Analysis of the EM Scattering
by an Open-Ended S-Shaped Rectangular Waveguide Cavity

5. Report Date

December 1988

7. Author(s)
P.H. Law, R.J. Burkholder and P.H. Pathak

8. Performing Org. Rept. No.

719630-2

9. Performing Organization Name and Address
The Ohio State University

ElectroScience Laboratory

1320 Kinnear Road

Columbus, OH 43212

10. Project/Task/Work Unit No.

11. Contract(C) or Grant(G) No.
(©)
(G) NAG3-476

12. Sponsoring Organization Name and Address
NASA Lewis Research Center

21000 Brookpark Road

Cleveland, OH 44135

13. Report Type/Period Covered
Technical Report

14.

15. Supplementary Notes

16. Abstract (Limit: 200 words)

The EM Backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with
a planar interior termination is analyzed when it is illuminated by an external plane wave. The
analysis is based on a self-consistent multiple scattering method which accounts for the multiple
wave interactions between the open end and the interior termination. The scattering matrices
which described the reflection and transmission coefficients of the waveguide modes reflected and
transmitted at each junction between the different waveguide sections, as well at the scattering from
the edges at the open end are found via asymptotic high frequency methods such as the geometrical
and physical theories of diffraction used in conjunction with the equivalent current method. The
numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight
inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet
cavity redistributes the energy reflected from the interior termination in a way that is different

from a straight inlet cavity.

17. Document Analysis a. Descriptors

b. Identifiers/Open-Ended Terms

¢. COSATI Field/Group

19. Security Class (This Report)

18. Availability Statement
Unclassified 4

21. No. of Pages

7

20. Security Class (This Page)
Unclassified

23. Price

(See ANSI-Z239.18)

See Instructions on Reverse
Department

OPTIONAL FORM 1373 (4-17)
of Commerce




- S T o

Contents
List of Tables iv
List of Figures v
CHAPTER PAGE
1 Introduction 1
2 Formulation Using the Self~Consistent Multiple Scattering
Method 6
3 Modal Transmission Coeflicient for the Junction Between
a Straight and an Annular Rectangular Waveguide Section 12
3.1 Modal Field Structure of a Straight Rectangular Waveguide 12
3.2 Modal Field Structure of an Annular Duct . . . . . ... .. 14
3.2.1 Modal Field Structure Calculations. . ... ... .. 15
3.3 Junction Transmission Matrix . . . .. ... ... ...... 22
4 Results and Discussion 32

PRECEDING PAGE BLANK NOT FILMED

il



List of Tables

3.1 Properties of Modes in Rectangular Waveguide . . . . . ..
3.2 Transmission Matrix [Tis] from a Rectangular Duct to an
AnpularDuct . . . ... ... o oo e

iv

F o~ Somatmnn. e —




)/

R IR TN D S EN R N BE . e .

List of Figures

1.1

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

S-shaped cavity with rectangular cross-section formed by
joining straight and annular waveguide sections. . . . ...

2-dimensional parallel and s-shaped duct models . . . . ..

Geometry of the straight rectangular waveguide section. . .
Geometry of the annular waveguide section. . . . . ... ..

Geometry and backscattered E-theta plot of an S-shaped duct.

Geometry and backscattered E-phi plot of an S-shaped duct.
Geometry and backscattered F-theta plot of a straight duct.
Geometry and backscattered E-phi plot of straight duct. . .

Geometry and backscattered E-theta plot of an S-shaped duct.

Geometry and backscattered E-phi plot of an S-shaped duct.
Geometry and T'M backscatter plot of a 2-dimensional S-
shaped ductat 10 Ghz. . . ... ... ...... ... ...
Backscattered fieldsat y —z plane. . . . . . ... ... ...
Conical patterncutat 6 =10°. . .. ... ... .......

4.10 Conical patterncut at 8 =30°. .. ... ...........
4.11 Conical patterncut at  =45°. . ... ... .........
4.12 Nine conical pattern cuts from 8§ =5°to § =45°. . .. ...

13
15

35
36
37
38
39
40

41
42
43
44
45
46



;s

Chapter 1

Introduction

An analysis is developed for predicting the electromagnetic fields (EM)
which are scattered from a 3-dimensional (3-D) perfectly conducting S-
shaped open-ended semi-infinite waveguide cavity with a planar interior
termination when it is illuminated by an external plane wave. The analysis
is based on a hybrid asymptotic modal approach which has been discussed
extensively in [1,2,3,4].

Briefly, this hybrid asymptotic-modal, or more simply the hybrid modal
approach, models the S-shaped rectangular cavity by smoothly joining to-
gether straight and annular rectangular waveguide sections as shown in Fig-
ure 1.1. The scattering matrices which describe the reflection and transmis-
sion coefficients of the waveguide modes reflected and transmitted at each
junction between the different waveguide sections, as well at the scattering
from the edges at the open end are found via aéymptotic high frequency
approximations such as the geometrical and physical theories of diffrac-
tion used in conjunction with the equivalent current method. The multiple
wave interactions between the various waveguide sections can be accounted
for in a straightforward fashion, in terms of these junction scattering (re-
flection and transmission) matrices, via the self-consistent multiple scat-

tering method [1,2,3,4]. It is noted that the asymptotic high frequency
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Figure 1.1: S-shaped cavity with rectangular cross-section formed by joining
straight and annular waveguide sections.
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based approach is far more efficient for calculating the modal reflection

and transmission coefficient matrices for the waveguide junctions than is

the classical mode matching technique, as the latter requires a numerical

matrix inversion making it cumbersome and inefficient. Furthermore, these -
modal coeflicients obtained via asymptotic high frequency approximations

generally have a relatively simple form thereby lending physical insight into

the modal reflection and transmission process. It is the hybrid combination
of high frequency and modal techniques that makes the present approach
a hybrid asymptotic-modal approach.

The modes in the straight and annular rectangular waveguide sections
are known analytically, and the decomposition of these modal fields into
their corresponding equivalent sets of modal rays can be performed easily.
However, consistent with some previous experience [1], it is seen that the re-
flection coefficient matrix elements are negligible in comparison to the trans-
mission coefficient matrix elements characterizing the smooth junctions be-
tween the straight and annular waveguide sections. Hence, it is found that
the modal reflection effects can be ignored in this analysis thereby requiring
one to essentially retain only the modal transmission matrix.

It is noted that in this multiple scattering method, the total scattered
field consists of a superposition of three contributions, namely:

(i) contribution from the diffraction of the incident wave by the edge at
the open end;

(ii) contribution from the scattering by the interior termination, which
arises from part of the incident energy which couples via the open end into
the S-duct (or cavity) and then reflects from the termination to partly ra-
diate out through the open end. The remaining energy is scattered back
into the cavity to again reflect from the termination, and so on. Since

the reflection from the planar perfectly-conducting termination is generally



more significant than the reflection back into the cavity from the open end,
the multiple wave interactions between the termination and the open end

may be ignored. Also, if the reflection from the termination can be made

small by making it an appropriate planar dielectric termination (say), then -

the interactions between the open end and the low reflection type termina-
tion can again be ignored! While the reflections of waves at each junction
between the waveguide sections can contribute to the net scattering from
the interior, this effect is negligible in comparison to the other effects as
mentioned earlier, and it is therefore ignored making the only contribution
to the scattering from the interior of the cavity as being due to the termi-
nation. Nevertheless, it is noted that any of these effects which have been
ignored here can be put back directly via the multiple scattering method
(1,2,3,4], if it is so desired;

(iii) contribution from the scattering by any other external features of
the S-duct. This effect is not of concern to the present work and it will
therefore not be included.

Since the diffraction from the open end and the modal reflection from
the interior planar termination have already been found for the rectangu-
lar waveguide case, and the corresponding scattering matrices have been
given explicitly for these two junctions in [2,4], it only remains to find the
modal transmission coefficient scattering matrix for the junction between
a straight and annular rectangular waveguide section. Before finding the
latter, the general formulation for the total scattered field in terms of the
multiple scattering method is first given in Chapter 2. This multiple scat-
tering method directly employs the scattering matrix for the open end, the
transmission matrices for the junction between straight and annular waveg-
uide sections, and the reflection matrix for the planar interior termination

[1,2,3,4]. The details involved in the development of the modal transmis-



sion (scattering) matrix for the junction between a straight and annular
waveguide section are then presented in Chapter 3. Finally, the results for
the open end and the termination scattering matrices are combined with
the junction transmission scattering matrix developed in Chapter 3, in ac-
cordance with the formulation given in Chapter 2 for the total scattered
field; the numerical results based on this total scattered field are presented
in Chapter 4. An e/ time convention is assumed and suppressed in the

following analysis.



Chapter 2

Formulation Using the
Self-Consistent Multiple
Scattering Method

As mentioned in Chapter 1, an incident plane wave excites the fields inside
the duct configuration as shown in Figure 1.1. These fields can be expanded
into the natural waveguide modes of each uniform section. Transmission
and reflection of waves at a junction as well as propagation through a
given waveguide section are all described in terms of reflection, transmission
and propagation matrices. The elements of these matrices are found us-
ing asymptotic high frequency approximations such as the geometrical and
physical theories of diffraction in conjunction with the equivalent current
method. The multiple wave interactions between the different junctions
can be accounted for using the self-consistent Multiple Scattering Matrix
(MSM) formulation [1,2,3,4] which makes use of these reflection, transmis-
sion and propagation matrices.

As a quick review of the MSM formulation, consider a a plane wave
incident on an open ended parallel plate duct as shown in Figure 2(a).
This 2-D scattering example is considered due to its simplicity in geometry
and in formulation. The MSM result obtained can then be extended to

a rectangular S-shaped duct as will be shown later in this chapter. The




scattering matrices involved in a rectangular duct are more complex than
those in a parallel plate duct. Reference [2] gives a detailed discussion and
derivations of these scattering matrices. For the 2-D scattering example,

let the symbol U be the z-directed E-field of the TE case and the H-field

of the TM case, respectively; this incident field can be written as
ﬁinc — fUince—jk(z cos6+ysinéd) (2.1)

Also, let U” refer to the field scattered into the exterior region by the waveg-

uide cavity. Thus, U*® represents the complex amplitude of the scattered
electric field E* = ZE* for the TE case and the scattered magnetic field

el

H*® = zH* for the TM case. Let
vr = U,+U;+U,, (2.2)

where U? is the component of the field scattered into the exterior by just
the edges at the open end, and U! is the contribution to the field scattered
into the exterior through reflection from the interior termination. Also, U;,,
is the contribution to the scattered field due to any other external features

of the duct configuration. This contribution is not of interest here and thus

is neglected. In the far zone of the open end of the cavity, one can write

Ut = Usofonlk, ) (2.3)
= incJe h\/Vy .
° ! VT
e—jkr
U: = Uincge,h(k,0)7 (24)

where (r,0) are shown in Figure 2.1(a), and f.» and g.» are unknown
pattern functions yet to be found.

From the self-consistent multiple scattering method [1,2,3,4], one can
express the total far zone U* (minus U?,,) in terms of the generalized scat-
tering matrices introduced as

—jkr

€

(@) = {ISu] + [SullPITa)PYI) - [Sul(PATL)PY ™ (Sul} Uine =~
(2.5)
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In (2.5), the matrix [P] denotes the phase delay of the modes as they
propagate between junctions A and Bj; this [P] is a diagonal matrix. The
[I'p] in (2.5) denotes the total reflection coefficient scattering matrix at
junction B which describes the modes reflected back into region 2 due to
modes incident at B from region 2.

Note that if there was no termination, then [I'g] would be a null matrix
and the scattered field U’ in (2.5) would come only from the diffraction of
the incident wave 'at the front edges as described by [S11]. Therefore, [S},] is
the only scattering matrix present when there are no internal discontinuities
or terminations within the cavity. From (2.3),(2.4) and (2.5), one obtains

that

fern = [Sul
= Sn (2.6)

where the matrix [S1;] has only a single element S;,; also, it follows from

(2.2) that
ger = [Su][P[T5](PI([1] - [S2][PI[T5][P])~[Sx] (2.7)

If the duct configuration is changed from a parallel plate section as
shown in Figure 2.1(a) to an S-shaped duct section as shown in Figure
2.1(b), the MSM result of (2.5) is modified by simply replacing the termi-
nation reflection scattering matrix,[I'g], with an effective scattering matrix,
[St]. Since the front section of an S-shaped duct is a parallel plate section,
it would be useful to define an effective scattering matrix, [Str], at the end of
the first section to account for all of the rest of the duct sections including
the final termination. The MSM results of (2.5) can then be applied to find
the scattered field of an S-shaped duct in terms of this [Sr]|. For a smoothly
joined junction, it has been shown that the modal reflection coefficients are

negligible compared to the modal transmission coefficients [1]. Thus the



scattering matrix,[Sr| at junction 1 due to sections 2,3,4,5 can be written

as:

[Sr] = [A[[T5][4] (28)

with
[A] = [Po][Tus){Pa)[Ts4] [ Ps)[T25) [ P2][T22], (2.9)

and [A]* is the transpose of [A]. [A] is a matrix which traces the modal
field structure from junction 1 to the termination. [I'p] is the reflection
coeflicient scattering matrix due to the termination, and [P;] is the propa-
gation phase matrix due to section i. [T};] is the transmission matrix at the
junction between sections i and j. The subscript of [T};] means propagation
is from duct section 7 to section j. It is also noted that [A4] in (2.9) gives a
physical insight of how modes propagate in the duct structure. (2.9) should
be read from right to left. First, the modal fields pass through a junction
from section 1 to 2. The change in the modal field structure is accounted
for by the modal transmission matrix [T;,]. Next, the modes propagate
through section 2, and their phase delay results in a [P,]. A subsequent
transmission through a junction gives another transmission matrix [T3;] and
so on, until the modal fields hit the termination.

The MSM formulation in (2.5) and the effective scattering matrix in
(2.8) can also be applied to a 3-dimensional S-shaped duct. In Reference
[2], an analysis has been developed for predicting the near and far zone fields
scattered by a rectangular waveguide terminated with a planar impedance
surface. However, if one uses the effective scattering matrix [St] due to
a succession of duct sections as in (2.8) to replace the termination scat-
tering matrix, [I'p], one essentially gets the scattering patterns due to a
3-dimensional S-shaped duct just as for the 2-dimensional case described

above. The solution as proposed in [2| can be used to find the scattered

10




field [E’] which is represented by a matrix equation as follows

(E] = {(Su] + [$1[P)SHIPI(I] — [S2)[P[St)[P])[Su]} [E]
(2.10)

with the scattering matrices defined as [S;;] coupling matrix from an
external source to modal excitations,
[S12] radiation matrix from modal fields to an external field point,
[S22] internal reflection matrix at the waveguide aperture,
[P] the modal propagation phase delay matrix,
[E?] incident field of the external source, and

[Sr] the effective reflection matrix at the end of the first section.

All these matrices are well defined in [2] except the effective scattering
matrix [St] which is defined in Equations (2.8) and (2.9). The transmission
matrix, [T;;] as appeared in (2.9), will be discussed in the next chapter.
[E?’] and [E'] are column matrices with three elements representing the
three vector components of E* and E, respectively. Once [Sr] is found,
Equation (2.10) can be used to simulate farfield patterns which will be the
topic of Chapter 4.

11



Chapter 3

Modal Transmission
Coefficient for the Junction
Between a Straight and an
Annular Rectangular
Waveguide Section

To determine the junction transmission matrix, the modal fields of the
straight and annular rectangular waveguides must be defined first; this is
done in sections 3.1 and 3.2. The junction scattering matrix is then given

in 3.3.

3.1 Modal Field Structure of a Straight Rect-
angular Waveguide

Figure 3.1 shows the geometry of the straight rectangular duct section. The
modal electric field E'* within this straight rectangular waveguide region

(z < 0) may be represented in the usual manner [1,2,3,4] as:
nm nm m

E* = Y% [A'* & eFBime L BrE (g 4 gen ) e*ﬂ"’m'] . (3.1)

1] .
Here, €, and €] denote the transverse (to z) electric vector mode func-

tions for the TE,, and TM,,, modes, respectively (where TE and TM

12
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Figure 3.1: Geometry of the straight rectangular waveguide section.

are with respect to the %-direction). Likewise, the 87, and ., denote
the propagating constants of the T'E,,,, and T'M,,,, modes, respectively. It

is noted that e is the z2-component of the T'M,,,, modal electric field.

The superscripts + and — in Equation (3.1) refer to modes propagating
in the +2 and —Z directions, and the superscript r implies that the fields
pertain to a straight rectangular waveguide section. It is also convenient to

define the magnetic field H™ in the straight rectangular waveguide region

following the representation for the electric field E™* in (3.1); thus
B = S5 Ak (4R + ) €790 + Br (£F,,) ¥z
(3.2)

The A% and B;% in (3.1) and (3.2) are the modal coefficients which can
be determined once the excitation is known. The k7, and zh[.  are the
magnetic vector mode functions for the TE,,, modes, whereas A’ is the
magnetic vector mode function for the T M,,, modes. Table 3.1 gives the
explicit forms of the propagating mode functions in a straight rectangular

waveguide. For the derivation and explicit expressions for these modes, one

13



can refer to a well known text such as [5].

3.2 Modal Field Structure of an Annular Duct

The modal fields for an annular duct also of rectangular cross-section, which

is shown in Figure 3.2, can be established in a similar manner. Now, since
the propagation is along the +¢ directions, and ¢ is not a constant vector,
the fields £ and H°* are initially defined as having components trans-
verse to Z and along Z, respectively. Afterwards, these modal fields can be
rearranged to give a more convenient set of modes; i.e., transverse to d; and
axial to @, since ¢ is the propagating direction. The modal electric field

E°* and the magnetic field H°% can then be written as:

Bt = 35 [Cpf (opq % bedpe) €75 + Dpy (85, % elg) €754
P 49

(3.3)

Bt = D N[O (s + hipe) €75 + Dy (Lhs, + Ghsy,) €751°]
P q

(3.4)

Again, & and €& denote the transverse (to @) electric vector mode
functions for the TE,, and T'M,, modes ,and the f—z;; and E;q denote the
transverse (to ¢) magnetic vector mode functions for the TE,, and T M,,,
respectively. The superscript a implies that the fields pertain in the annular

duct section. The modal field structure of an annular duct will be discussed

in more detail in the next section.

14
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Figure 3.2: Geometry of the annular waveguide section.

3.2.1 Modal Field Structure Calculations

In an annular waveguide (as shown in Figure 3.2), there are always a finite
number of propagating modes. These modes can be classified into sets of
TM to z or TE to z, where the former set of modes has no H, field and
the latter set of modes has no E, field. A combination of these two sets of
modes gives a complete field structure inside the waveguide. In addition to
these propagating modes, there are also an infinite number of evanescent
modes. These evanescent modes decay exponentially along the waveguide
axis. For the present analysis, the effects of these evanescent modes are

ignored.

TM (transverse to z) modes:

The T M, fields can be found via a z-directed magnetic vector potential,

A = U3, The magnetic vector potential satisfies the wave equation

(V2+k*) 4 = 0 (3.5)

15



where k is the free space wave number, 27 /). But, since 2 is a constant

vector, the above equation can be reduced to a scalar form as:
(V2+k?)® = 0.

This equation in cylindrical coordinates can be rewritten as:

148 o 1 82 8? 2
[;%(P’gp‘)-f-p—za—d;;-i'é;-!-k]‘l’ = 0.

The electric and magnetic fields are related to ¥ as [6]:

_ 2, 8% — 13¥
(B, = 52 5705 H, = ;54

_ 2,108%% _ _ 8%
{ B¢ = 5,06 Hy = -5,

_ Z 82 2 —
‘Ez——yf(a—;{-*-k)‘l’ HZ—O-

(3.6)

(3.7)

(3.8)

The boundary conditions used to find ¥ are that all tangential electric field

components are zero on the walls of the guide. In order to construct ¥, let

the separation of variables suggest a solution of the form:

\I’(P, é, z) = R(p)(b(q&)Z(z)

(3.9)

Substituting Equation (3.9) into Equation (3.7) and introducing two sep-

aration constants p; and v,, one will get three differential equations as

follows:
16
zoaZ =
100,
3947 s
8 ( OR
o2 (o254 [ t) -] = 0.

The solutions to Equation (3.11) are
®(¢) = e % and etie?
where modes propagate in the +¢ directions.

16
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(3.11)

(3.12)

(3.13)



S .k TE e

The solution to Equation (3.10) is

Z(z) = Acospiz+ Bsinpz. (3.14)

2%
3¢0:

Since E, = 371,:‘1-, , the boundary condition

Ey(z=0;z=1) = 0 (3.15)

implies

%g(z =0;z =1) 0. (3.16)

Therefore, from (3.14) and (3.16), B = 0 and p, = Z7. Hence, Z(z) can be
rewritten as

Z(z) = Acos il

i z,p=0,1,--- (3.17)

Likewise, (3.12) is a Bessel’s equation and has solutions R(p) which can be

linear combinations of Hf,:)(kcp) and H,Sf)(kcp) with

ke = kz—(l’il-’i)2 (3.18)

where H{!)(k.p) and H{?)(k.p) are Hankel functions of the first and second
kinds, respectively, of order v, and argument k.p. From the boundary

condition on the # directed E field, one obtains
E.(p=a;p=0b) = 0. (3.19)

Next, one can utilize (3.19) and (3.8) to obtain

S
Eo= %" tea)?
VA p\?
- =2 k2—<—> = q; =b)=0. 2
7k ] ]‘I’(p a;p=>5)=0 (3.20)

Now R(p) can be constructed via (3.20) as

1
R(p) = 5;[Hif’(kcb)H,S:)(kcp)—H.Sj)(kcb)Hs?(kcp)]- (3.21)

17



Note that R(b) = 0 has been employed. To satisfy ¥(p = a) = 0, the

eigenvalues v, can be found numerically by solving the equation

R(a) = 0. (3.22)

Since R(p) in (3.21) depends on p and ¢, R(p) should be rewritten as R,,(p).
Consequently, the eigenvalues v, found from (3.22) should be dependent on
p and hence are renamed as vp,.

Using linear combinations of these solutions and enforcing the boundary
conditions gives the complete solution for the magnetic potential ¥ which

can be written as

Z Z C+ Pq COS (Pllz) e—jqu¢' + Cp—quq(P) cos (?%z) eJ'VMQ"
p=0g=1
(3.23)

where CZ is related to the modal coefficients.

The electric and magnetic fields inside the waveguide thus can be found
from Equation (3.8). In addition, these modal fields can be put in a form
to fit Equations (3.3) and (3.4). For example, the T M, electric modal field

E°% can be written as:
Bt = (&, + el ) e7e?, (3.24)

The subscript e means the field is TM or e type. Also by definition &;_ are

field components transverse to ¢, thus from (3.8) one gets
{ eme*j “v"’ = zEij + pE<t

pPq
T e _ GRS (3.25)

Et, B and E , are found from (3.8) and (3.23) which are summarized

in (3.28-3.30).

The T'M,, magnetic modal field H 2% can be put in a similar form, from

Equation (3.4):

et = (Lhg, + Bhs,,) ¥, (3.26)

[

18
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where

ha oFivp,d — et
{ ToaeT P ome (3.27)

&hgpqe;j";cd’ = qSH
The individual electric and magnetic field components can be summa- -

rized as follows:

EF = qu% (?) sin (p-l—wz) R;,q(p)eq:j""d’ (3.28)
. ] oV, pT . pm Vpq

S = o () () it

z, j

52 - - (7)n () i 020
e V pr 1%

Hp;tq = __qu_;g_ cos (Tz> Roi(p)e™ pe® (3.31)

Hy, = Apyjcos <?i7I z) R, (p)e¥/*re? (3.32)

The normalization constant A, is found by normalizing the power car-
ried by the pq** mode to unity. This is done by integrating the Poynting

vector over a cross section of the guide and setting this equal to unity,

/ / xhe)-4dS = 1. (3.34)

Substituting (3.25) and (3.27) into (3.34), A,, can be found as

1

A, = {2251 [k?-(%ﬁ)z] /baﬁg”—)dp}—i (3.35)

where

e = {2 ”’ZO. (3.36)

TE (transverse to z) modes:

The derivation for the T E,, fields is very similar to that for the T'M,, fields.

They can be found as follows:
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Let F = ¥; be the electric vector potential satisfying the wave equation
(V2+k)F = 0 (3.37)

which can be reduced to a scalar form as in Equation (3.6). The electric

and magnetic fields are related to this potential as [6]

( _ 186V _ v
E, = T8¢ H, = jklzo 8p8:z
2
! By = & L Hy=3710 (3.38)
| E:=0 H, = jklzo (.9:2 + kz) v.

Again, using the boundary conditions that electric field components
are zero on the walls, these field components can be put in a form as in

Equations (3.3) and (3.4), such that
Byt = (e £ del,) ™50, (3.39)

and from (3.38) one gets:

—a' :Fju';d> — AHEhE
{ €pe® s ’fE;P; (3.40)
¢e € = ¢E.

The subscript h in (3.39) and the same superscript in (3.40) means the field
is TE or h type. Furthermore, EXX and Ez;fq are summarized in (3.43) and

(3.44), respectively. It is similar for the T E,, case

Hit = (2he + §hS,) e¥e? (3-41)
where
a' :FJVqu) — ht ~rrht
Poqe H,,,,,+pH,,,,,, (3.42)
d’h’;pq e o = ¢H érq°

The individual field components can be summarized as follows:

vV, pr iVpgd
By = By sin (—l—z> Ryq(p)e™ e (3.43)

20




Egf = —Byjsin (EIIZ) R. (p)e¥ime

E¥ =0

H,, = _B""klzo (1%) cos (pTwz) R, (p)e¥i*

1 = Bl (7)o (72) Bml)™

Hf:f, = _quklzo [kz - (%"—)2] sin (EIIZ) qu(p)exjvmd’

where

1
Rolp) = 5 [HD (keb)HE) (kep) — HLY (kb)) HIZ) (kep)]

k, = kz—(’il’—'

The normalizing constant, B,,,

l
By, = {2kZ Vpq

with Rp,(p) defined in (3.49).

).

1s

- ()| [ =2}
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(3.47)

(3.48)

(3.49)

(3.50)

(3.51)



3.3 Junction Transmission Matrix

In this section, the junction transmission matrix from a rectangular waveg-
uide to an annular waveguide is discussed. When the modal fields are
transmitted from a rectangular duct section to an annular duct section, the
field representation must be transformed from rectangular modes to annu-
lar modes. Since both of these modal field structures are well-defined, the
question left is to find the suitable excitation coefficients for the transmit-
ted annular modes. A junction transmission matrix performs this function;
it finds the annular transmitted fields once the incident rectangular modal
fields are known. This transmission matrix is obtained by employing the
incident modal fields to define the equivalent surface current at the junc-
tion aperture. The latter equivalent sources then generate the transmitted
annular fields.

It is noted that the modal coefficients A7f and B.Z for the straight
rectangular guide as in (3.1-2), and C3f together with D2F for the annular

guide as in (3.3-4) can be represented as column vectors by

AT ]
TE Rectangular Guide Modes: [A4’f] = : (3.52)
| AN |
[ Bii ]
TM Rectangular Guide Modes: [B’f] = : (3.53)
| B |
[ O
TE Annular Guide Modes:  [C2E] = : (3.54)
| CFo
[ D
TM Annular Guide Modes: [DgF] = : (3.55)
| Do

If the rectangular modal fields are incident on a rectangular/annular duct

junction, the modal coefficients for the transmitted fields in the annular re-
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gion are related to the incident modal coefficients by a transmission matrix,

TIZ, as
[oad] [Cht ] [Theem] 1T 1452,
- (3.56)
[Dgf] L [Ttm] [Tomm] | LB
(Tia]

where the subscript of [T2] means propagation is from duct section 1 to
duct section 2. In this case, section 1 is a straight rectangular section and
section 2 is an annular duct section. Futhermore, the meaning of th;;nm is
the following. A rectangular TM,,,, (or e type) mode with modal amplitude

Brt which is incident at the junction is partly transformed into an annular

TE,, (or h type) mode with modal amplitude as

cet = Tk Brh (3.57)

pginm~— nm

and the rest is transformed into an annular TM,, mode with modal co-
efficient D3f. The + sign in the above equation defines the propagating
direction towards the termination as indicated in Figure 1.1. When prop-
agation reverses direction, the modal fields from an annular duct would be
incident on the junction. The new transmission matrix [Ty;] can be shown
by reciprocity to be the transpose of the transmission matrix [Tj,]. This

relationship can be written as:
[T21] = [le]t (3.58)

where t is a transpose operator.

The junction transmission matrix [T},] as shown in Equation (3.56) has
four submatrices. Each of these submatrices carries a different function.
For example, the submatrix [T}¢,, ] transforms the incident T M, rectan-
gular modes into the transmitted TE,, annular modes. These submatrix

elements can be found by employing the incident modal fields to define
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equivalent incident electric and magnetic surface currents in the aperture
formed by the junction via the Kirchhoff approximation and then evaluat-
ing the amplitudes of the transmitted modes which are produced by those

equivalent currents as follows [1,2]:
1 —~ - - —
at __ - a+' _ a+ .
By = —5|f [ (Ba T Hy - 3) as] (3.59)

where Bg! is the transmitted modal excitation which is Cot or D3} for
TE,, or TM,, transmitted, respectively. E;: and I-{‘:: are the transmitted
modal fields which can be represented by Equations (3.28) to (3.33) for
T Mp, transmitted and by Equations (3.43) to (3.48) for TE,, transmitted.
These fields can be expressed as

for TM,, transmitted:

E = &gt dein

= $Egh + pES, + ES;, (3.60)
Hyf = hog+ oG,

= pHZ + ¢H (3.61)

and for TE,, transmitted:

Est = &+ bed,

= pEN} + SEL (3.62)
H°+ = ’—l;q + ¢h$}’q

= 3HM 4 pHM 4 SH (3.63)

zpq PPq

Note that the phase factor e 7*»¢® has been suppressed because its effect
will be included later in the propagating modal phase path delay matrix
[P]. Furthermore the expressions for the annular modal fields components
Bl Eppgr Egpgy Hls

to (3.33) for the TM case and in Equations (3.43) to (3.48) for the TE

H} and Hf, are summarized in Equations (3.28)
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case. J and M in (3.59) are the equivalent incident electric and magnetic

currents, respectively. They can be written as

S

J = ax (3.64)

2>

E x (3.65)

3>

=
I

where 7 is the unit aperture normal vector pointing in the direction of
propagation of the incident modal field. The E and H in (3.64) and (3.65)
are found via the Kirchhoff method as mentioned earlier; hence, E and H
are assumed to be given by the TM and TE incident fields as follows:

(1) for TM,,,, incident:

E = &, -z, (3.66)
(3.67)

T

i

P~n
-

nm

and (2) for TE,,,, incident:

E = ¢ (3.68)

nm

—Rn 4 3R (3.69)

oY
il

The field components for both the TE,,, and T M,,, cases are summarized
in Table 3.1. |

Each of the four submatrices can be represented by a combination of
two sets of Equations. The first set of equations is chosen either from (3.60)
and (3.61) for the transmitted annular T'M,, fields or from (3.62) and (3.63)
for the transmitted annular TE,, fields. The second set of equations com-
prises either of (3.66) and (3.67) for the incident rectangular T'M,,,, mode
or of (3.68) and (3.69) for the incident rectangular TE,,, mode. For ex-
ample, substituting the first set of Equations (3.60), (3.61) and the second
set (3.68), (3.69) into Equation (3.59), one gets the transmission submatrix

I . which transforms a rectangular TE,,, mode into an annular TM,,
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mode. The four possible combinations of these two sets of equations gener-
ate the four submatrices in the transmission matrix. The formulations for
these submatrices are summarized in Table 3.2.

There is one junction transmission matrix for each junction in the duct
structure as shown in Figure 1.1. However some of the junction matrices

are equal due to symmetry. These relationships are as follows:

[Ty2) = [T52] = [Tos" (3.70)
and, if r, = r4 in Figure 1.1, then

[T12] = [Ts4) = [Tus]". (3.71)

There is a reversal of coordinate systems at the junctions between sec-
tions 3 and 4. Therefore, [Tys] # [T43]. However, it can be shown that there
is a simple relationship between the elements of the matrices [T};] and [T34).

For both the rectangular TE and T M cases, this relationship is given by
[Ts]™™ = —(=1)"[T1]™ (3.72)

where nm is the rectangular mode number in the width (z-direction) and
in the height (y-direction) dimensions, respectively. Due to the symmetry
relations of the transmission matrices, if the inner radius of the curved
sections are equal, i.e., 7, = 74, then only [T};] is needed to be evaluated in

order to find [4] in (2.9).
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Yom

Table 3.1: Properties of Modes in Rectangular Waveguide

TE.n

TMum

n? +m
= Npm Yom <5 —* cOsngxr cosmpy 0
nm

= N, Yomng sinn,x cos mpy
= N, Y,mmy cos N sin myy
= Tpm MM COS NG T SIN MY

= — N, mn, sInn,T cos mpy

n,’,+m2 . .

—Npm ——2 sinn,z sin mpy
JBnm

—NpmYomms sin ngx cos mpy

N Yoamng cos n,z sin mpy

N, mnq cOS N, 8in MpY

Npmmp sin ngx cos mpy

= oﬂnm/k Yok/ﬂnm
o<z<a 0<y<b
Note that for both modes:

Nom = 4[2€on€omYnmab(n2 + mf)]-%

Bum = [k —n2 —m}]?

ne, =nnr/a

]2 n=0

€n=11 n #0

my, =mn/b
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Table 3.2: Transmission Matrix [T};] from a Rectangular Duct to an An-

nular Duct

(1) TM,n (rectangular) modes in, T M, (annular) modes out

[Pem] =

ifp=m

and =

»ijo
=i

A, (k2 - (%)2) NonYammy 7 8in 72 Ryo(p)dp

—bze A (BT) N Yamna fjy cosnaz Ry (p)dp

=2 N Ay, [ Lsinn,zRyq(p)dp

Ty p

ifp#m

Note: Npm, Yum, M, and N, are defined in Table 4.1. vpq, Ryq, Apq are
defined in Equations (3.22), (3.21), (3.35) respectively. p and z are related

by

s + T
Tz = —p

2
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Table 3.2 continues

(2) TM,,, (rectangular) modes in, TE,, (annular) modes out

2 r
—%—?53 (Ic2 - (?) ) Npmna J2 cos naz Rpg(p)dp
he _ o .
[qu;nm] = —-%;Bf: (ab’—') Npmmy [7 sin na:cR;,q(p)dp

—%VmNannmnaqu Jre lp cosn.zRp(p)dp

TS

ifp=m

and

I
o=/
X
3
RN
3

B,, are defined in Equation (3.51). R,,R,, and v, are defined in the

section of TE annular modes.
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Table 3.2 continues

(3) TE,. (rectangular) modes in, T'M,, (annular) modes out

2 . s
%equike (k2 — (%) ) NumYnmna [72 sinngz Rpg(p)dp

[F;Z;nm] = 9 l;’eA,,qfk*1 (265) Nom Yomme f,': cos na:z:R;,q(p)dp

equupq amMa fr % Lsinn,zR,,(p)dp

ifp=m
and = 0 ifp#m

n=20,1,2,3,..
m=0,1,2,3,...
with { n = m = 0 excepted
p=0,1,2,3,...
q=1,2,3,.

Apg,Rpq, R, and vy, are defined in the section of TM annular modes.
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Table 3.2 continues

(4) TE,., (rectangular) modes in, TE,, (annular) modes out

(

2
4 (1 (5°) Mo o

[P;;:;nm] = —%22,: (%) wmTa f,’: sinn.z R, (p)dp

~200aNoam Yrm™ms Bpg f"‘ L cosn,zR,(p)dp

\

ifp=m
and = 0 ifp£m
n=01,23,
m=0,1,2,3,.
with ¢ n=m =0excepted
p=1,23,.
qg=1,2,3,.

By, are defined in Equation (3.51). Rg,,R,, and v, are defined in the

section of TE annular modes.
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Chapter 4

Results and Discussion

In this section the fields backscattered from a rectangular, S-shaped duct
will be presented in the form of backscatter vs. aspect angle plots. The
geometries of an S-shaped duct and a straight duct with rectangular cross-
sections are illustrated in Figures 1.1 and 3.1, respectively. The scattering
effects included in this analysis are the internal reflection at the duct cavity
termination and the external rim diffraction at the duct opening. The
structural scattering due the exterior duct surface is not included. The
emphasis of this section will be focused on comparing the backscattered
fields of an S-shaped duct with those of a straight duct. It is expected
that the backscattered patterns will be different because the curvature of
an S-shaped duct redistributes the coupled energy in a way that differs
from a straight duct. Since both the straight and S-shaped ducts in this
analysis are perfectly conducting, none of the energy coupled into the duct
is lost. Although the backscattered pattern will change depending on the
duct geometry, the average dB level will remain about the same.

First, as a check to the analysis of an S-shaped duct, the backscattered
patterns of a 5 section S-shaped duct is obtained in the z — z plane. As
shown in Figure 4.1, the lengths of the last 4 sections of this S-shaped duct

approach zero. In other words, the geometry of this S-shaped duct is no
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different than a straight duct. The height of this duct is 6 inches and the
width is 4 inches. At 10 GHz, this translates to 99 propagating modes in the
rectangular section and 105 modes in the annular section. The backscat-
tered E-theta plot and the E-phi plot are shown in Figures 4.1 and 4.2,
respectively. The corresponding patterns from a straight duct are shown in
Figures 4.3 and 4.4. Comparing the backscattered E-theta patterns of Fig-
ures 4.1 and 4.3 and comparing the backscattered E-phi patterns of Figures
4.2 and 4.4, one finds that they are virtually the same. Consequently, this
analysis successfully reduces a more complicated S-shaped duct geometry
into a straight duct geometry as far as backscatter patterns are concerned.

Figures 4.5 and 4.6 show the backscattered patterns of an S-shaped duct
in the ¢ — 2 plane. Figure 4.5 also defines the geometry of this S-shaped
duct. Comparing these two patterns with those due to a straight duct as
shown in Figures 4.3 and 4.4, one finds that the S-shaped duct changes the
pattern shape. The coupled energy is redistributed after it radiates back
out although the average dB level remains about the same. Moreover, in the
z — z plane, the S-shaped duct does not have symmetry in geometry as the
straight duct does. Thus the backscattered patterns of the S-shaped duct
in this plane are not symmetric, contrary to the patterns due to a straight

duct; these effects can be seen from Figures 4.3 to 4.7. The backscattered E-
theta field of this S-shaped duct, in Figure 4.5, also compares very well with
the TM backscatter of a 2-dimensional S-shaped duct as shown in Figure
4.7. This is expected because only the pattern in the principal (horizontal)
plane of this 3-dimensional duct is considered. The field patterns due to
the other principal (vertical or y— z) plane is shown in Figure 4.8. It can be
seen that in this plane, the pattern is symmetric because of the symmetry

of the structure.

Figures 4.9 to 4.11 show the backscattered patterns of the S-shaped duct
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due to different conical pattern cuts. The theta angle is fixed at 10,30 and
45 degrees for Figures 4.9, 4.10 and 4.11 respectively. The phi angle changes
from 0 to 360 degrees for each of these figures. It can be seen that the dB
levels of these plots are about the same. However, the larger the angle
theta, the more the pattern fluctuates. Such characteristics can also be
seen in Figure 4.6 which shows nine conical pattern cuts at every 5 degrees
from 5 to 45 degrees. Again, this is expected because a small theta angle
leads to a small conical pattern variation in circumference. For example,
in the extreme case, if theta is zero, the whole conical pattern region will
be reduced to a single direction. As a result, a conical pattern with a small
theta will not be influenced as much by the radiation from many dominant

higher order modes as a conical pattern with a larger theta.
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Figure 4.1: Geometry and backscattered E-theta plot of an S-shaped duct.
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Figure 4.2: Geometry and backscattered E-phi plot of an S-shaped duct.

36




08 (RECT DuCT)

Rectangular Duct

~

Width= 4 inches, Height= 6 inches

s

]
s
<
)

0

L

T
-

-2 [ 4 n
DEG N THETA(PH=0, E-THETA PLOT)

Backscattered E-Theta Plot

With 99 propagating Modes at 10 Ghz

—— TOTAL FIELD
~~—— RIM DIFFRACTION
===- TERMINATION
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